\(\int (a+a \sin (e+f x))^{7/2} (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)} \, dx\) [164]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 40, antiderivative size = 96 \[ \int (a+a \sin (e+f x))^{7/2} (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)} \, dx=\frac {(A-B) c \cos (e+f x) (a+a \sin (e+f x))^{7/2}}{4 f \sqrt {c-c \sin (e+f x)}}+\frac {B c \cos (e+f x) (a+a \sin (e+f x))^{9/2}}{5 a f \sqrt {c-c \sin (e+f x)}} \]

[Out]

1/4*(A-B)*c*cos(f*x+e)*(a+a*sin(f*x+e))^(7/2)/f/(c-c*sin(f*x+e))^(1/2)+1/5*B*c*cos(f*x+e)*(a+a*sin(f*x+e))^(9/
2)/a/f/(c-c*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {3050, 2817} \[ \int (a+a \sin (e+f x))^{7/2} (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)} \, dx=\frac {c (A-B) \cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{4 f \sqrt {c-c \sin (e+f x)}}+\frac {B c \cos (e+f x) (a \sin (e+f x)+a)^{9/2}}{5 a f \sqrt {c-c \sin (e+f x)}} \]

[In]

Int[(a + a*Sin[e + f*x])^(7/2)*(A + B*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]],x]

[Out]

((A - B)*c*Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2))/(4*f*Sqrt[c - c*Sin[e + f*x]]) + (B*c*Cos[e + f*x]*(a + a*
Sin[e + f*x])^(9/2))/(5*a*f*Sqrt[c - c*Sin[e + f*x]])

Rule 2817

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rule 3050

Int[Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[B/d, Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x
] - Dist[(B*c - A*d)/d, Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f
, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {B \int (a+a \sin (e+f x))^{9/2} \sqrt {c-c \sin (e+f x)} \, dx}{a}-(-A+B) \int (a+a \sin (e+f x))^{7/2} \sqrt {c-c \sin (e+f x)} \, dx \\ & = \frac {(A-B) c \cos (e+f x) (a+a \sin (e+f x))^{7/2}}{4 f \sqrt {c-c \sin (e+f x)}}+\frac {B c \cos (e+f x) (a+a \sin (e+f x))^{9/2}}{5 a f \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.11 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.26 \[ \int (a+a \sin (e+f x))^{7/2} (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)} \, dx=\frac {a^3 \sec (e+f x) \sqrt {a (1+\sin (e+f x))} \sqrt {c-c \sin (e+f x)} (4 (60 A+23 B) \sin (e+f x)+\cos (4 (e+f x)) (5 A+15 B+4 B \sin (e+f x))-4 \cos (2 (e+f x)) (5 (7 A+5 B)+4 (5 A+6 B) \sin (e+f x)))}{160 f} \]

[In]

Integrate[(a + a*Sin[e + f*x])^(7/2)*(A + B*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]],x]

[Out]

(a^3*Sec[e + f*x]*Sqrt[a*(1 + Sin[e + f*x])]*Sqrt[c - c*Sin[e + f*x]]*(4*(60*A + 23*B)*Sin[e + f*x] + Cos[4*(e
 + f*x)]*(5*A + 15*B + 4*B*Sin[e + f*x]) - 4*Cos[2*(e + f*x)]*(5*(7*A + 5*B) + 4*(5*A + 6*B)*Sin[e + f*x])))/(
160*f)

Maple [A] (verified)

Time = 2.99 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.36

method result size
default \(-\frac {a^{3} \tan \left (f x +e \right ) \left (4 B \left (\sin ^{2}\left (f x +e \right )\right ) \left (\cos ^{2}\left (f x +e \right )\right )+5 A \sin \left (f x +e \right ) \left (\cos ^{2}\left (f x +e \right )\right )-15 B \left (\sin ^{3}\left (f x +e \right )\right )+20 A \left (\cos ^{2}\left (f x +e \right )\right )-24 B \left (\sin ^{2}\left (f x +e \right )\right )-35 A \sin \left (f x +e \right )-10 B \sin \left (f x +e \right )-40 A \right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+\sin \left (f x +e \right )\right )}}{20 f}\) \(131\)
parts \(\frac {A \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, a^{3} \left (\cos ^{3}\left (f x +e \right )-4 \cos \left (f x +e \right ) \sin \left (f x +e \right )-8 \cos \left (f x +e \right )+8 \tan \left (f x +e \right )+7 \sec \left (f x +e \right )\right )}{4 f}+\frac {B \sec \left (f x +e \right ) \left (4 \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )+15 \left (\cos ^{2}\left (f x +e \right )\right )-24 \sin \left (f x +e \right )-25\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, a^{3} \left (\cos ^{2}\left (f x +e \right )-1\right )}{20 f}\) \(169\)

[In]

int((a+a*sin(f*x+e))^(7/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/20*a^3/f*tan(f*x+e)*(4*B*sin(f*x+e)^2*cos(f*x+e)^2+5*A*sin(f*x+e)*cos(f*x+e)^2-15*B*sin(f*x+e)^3+20*A*cos(f
*x+e)^2-24*B*sin(f*x+e)^2-35*A*sin(f*x+e)-10*B*sin(f*x+e)-40*A)*(-c*(sin(f*x+e)-1))^(1/2)*(a*(1+sin(f*x+e)))^(
1/2)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.45 \[ \int (a+a \sin (e+f x))^{7/2} (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)} \, dx=\frac {{\left (5 \, {\left (A + 3 \, B\right )} a^{3} \cos \left (f x + e\right )^{4} - 40 \, {\left (A + B\right )} a^{3} \cos \left (f x + e\right )^{2} + 5 \, {\left (7 \, A + 5 \, B\right )} a^{3} + 4 \, {\left (B a^{3} \cos \left (f x + e\right )^{4} - {\left (5 \, A + 7 \, B\right )} a^{3} \cos \left (f x + e\right )^{2} + 2 \, {\left (5 \, A + 3 \, B\right )} a^{3}\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{20 \, f \cos \left (f x + e\right )} \]

[In]

integrate((a+a*sin(f*x+e))^(7/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

1/20*(5*(A + 3*B)*a^3*cos(f*x + e)^4 - 40*(A + B)*a^3*cos(f*x + e)^2 + 5*(7*A + 5*B)*a^3 + 4*(B*a^3*cos(f*x +
e)^4 - (5*A + 7*B)*a^3*cos(f*x + e)^2 + 2*(5*A + 3*B)*a^3)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(
f*x + e) + c)/(f*cos(f*x + e))

Sympy [F(-1)]

Timed out. \[ \int (a+a \sin (e+f x))^{7/2} (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sin(f*x+e))**(7/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int (a+a \sin (e+f x))^{7/2} (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)} \, dx=\int { {\left (B \sin \left (f x + e\right ) + A\right )} {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {7}{2}} \sqrt {-c \sin \left (f x + e\right ) + c} \,d x } \]

[In]

integrate((a+a*sin(f*x+e))^(7/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^(7/2)*sqrt(-c*sin(f*x + e) + c), x)

Giac [A] (verification not implemented)

none

Time = 0.43 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.56 \[ \int (a+a \sin (e+f x))^{7/2} (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)} \, dx=-\frac {4 \, {\left (8 \, B a^{3} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{10} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 5 \, A a^{3} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{8} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - 5 \, B a^{3} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{8} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )} \sqrt {a} \sqrt {c}}{5 \, f} \]

[In]

integrate((a+a*sin(f*x+e))^(7/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

-4/5*(8*B*a^3*cos(-1/4*pi + 1/2*f*x + 1/2*e)^10*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x
+ 1/2*e)) + 5*A*a^3*cos(-1/4*pi + 1/2*f*x + 1/2*e)^8*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2
*f*x + 1/2*e)) - 5*B*a^3*cos(-1/4*pi + 1/2*f*x + 1/2*e)^8*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi
+ 1/2*f*x + 1/2*e)))*sqrt(a)*sqrt(c)/f

Mupad [B] (verification not implemented)

Time = 15.87 (sec) , antiderivative size = 173, normalized size of antiderivative = 1.80 \[ \int (a+a \sin (e+f x))^{7/2} (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)} \, dx=-\frac {a^3\,\sqrt {a\,\left (\sin \left (e+f\,x\right )+1\right )}\,\sqrt {-c\,\left (\sin \left (e+f\,x\right )-1\right )}\,\left (140\,A\,\cos \left (e+f\,x\right )+100\,B\,\cos \left (e+f\,x\right )+135\,A\,\cos \left (3\,e+3\,f\,x\right )-5\,A\,\cos \left (5\,e+5\,f\,x\right )+85\,B\,\cos \left (3\,e+3\,f\,x\right )-15\,B\,\cos \left (5\,e+5\,f\,x\right )-240\,A\,\sin \left (2\,e+2\,f\,x\right )+40\,A\,\sin \left (4\,e+4\,f\,x\right )-90\,B\,\sin \left (2\,e+2\,f\,x\right )+48\,B\,\sin \left (4\,e+4\,f\,x\right )-2\,B\,\sin \left (6\,e+6\,f\,x\right )\right )}{160\,f\,\left (\cos \left (2\,e+2\,f\,x\right )+1\right )} \]

[In]

int((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(7/2)*(c - c*sin(e + f*x))^(1/2),x)

[Out]

-(a^3*(a*(sin(e + f*x) + 1))^(1/2)*(-c*(sin(e + f*x) - 1))^(1/2)*(140*A*cos(e + f*x) + 100*B*cos(e + f*x) + 13
5*A*cos(3*e + 3*f*x) - 5*A*cos(5*e + 5*f*x) + 85*B*cos(3*e + 3*f*x) - 15*B*cos(5*e + 5*f*x) - 240*A*sin(2*e +
2*f*x) + 40*A*sin(4*e + 4*f*x) - 90*B*sin(2*e + 2*f*x) + 48*B*sin(4*e + 4*f*x) - 2*B*sin(6*e + 6*f*x)))/(160*f
*(cos(2*e + 2*f*x) + 1))